Import pandas and load data from CSV file:

import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/sledilnik/data/master/csv/cases.csv', parse_dates=['date'])

Check columns in dataframe

df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1005 entries, 0 to 1004
Data columns (total 10 columns):
 #   Column                              Non-Null Count  Dtype         
---  ------                              --------------  -----         
 0   date                                1005 non-null   datetime64[ns]
 1   cases.confirmed                     989 non-null    float64       
 2   cases.confirmed.todate              1005 non-null   int64         
 3   cases.active                        992 non-null    float64       
 4   cases.closed.todate                 991 non-null    float64       
 5   cases.recovered.todate              990 non-null    float64       
 6   cases.rh.occupant.confirmed.todate  996 non-null    float64       
 7   cases.hs.employee.confirmed.todate  224 non-null    float64       
 8   cases.rh.employee.confirmed.todate  221 non-null    float64       
 9   cases.vaccinated.confirmed.todate   351 non-null    float64       
dtypes: datetime64[ns](1), float64(8), int64(1)
memory usage: 78.6 KB

Inspect data

df.head()

datecases.confirmedcases.confirmed.todatecases.activecases.closed.todatecases.recovered.todatecases.rh.occupant.confirmed.todatecases.hs.employee.confirmed.todatecases.rh.employee.confirmed.todatecases.vaccinated.confirmed.todate
02020-03-041.01NaNNaNNaNNaNNaNNaNNaN
12020-03-055.06NaNNaNNaNNaN1.0NaNNaN
22020-03-064.010NaNNaNNaNNaN3.0NaNNaN
32020-03-075.015NaNNaNNaNNaN3.0NaNNaN
42020-03-085.020NaNNaNNaNNaN5.01.0NaN

Plot something :)

df.plot(x='date', y='cases.recovered.todate', figsize=(15, 10))
<AxesSubplot:xlabel='date'>

png